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A continuum model is proposed to describe orientational states of a self-assembled system formed by rodlike
molecules, in contact with an isotropic solid substrate. The total free energy is determined by taking into
account the interactions between the molecules forming the film and between the molecules and the substrate.
A phase diagram is presented, demonstrating that a critical surface molecular density exists, depending on the
the ratio between the surface and the bulk free energy, separating homeotropic from tilted phases. The behavior
of the elastic constants is investigated as a function of the surface molecular density. The elastic description
leads to the presence of a linear term in the free energy, which accounts for the existence of possible sponta-
neous elastic distortions induced in the system.
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I. INTRODUCTION

Certain organic molecules orient themselves at the inter-
face between a gaseous and a liquid phase(or between two
liquid phases) forming a monomolecular film[1,2]. Such
monolayer films at the air-water interface exhibit a rich va-
riety of phases and constitute model systems for more com-
plex biological membranes[3,4]. These systems attracted a
lot of attention because molecular orientation at the inter-
faces is of importance in phenomena such as wetting, adhe-
sion, lubrication, coating, catalysis, etc.[5,6]. They have
been studied for over a half century by means of a great
variety of experimental techniques[4–8] or, more recently,
by investigation of dielectric properties both experimentally
and theoretically[9–14]. From the theoretical side, the ap-
proaches were mostly concentrated on molecular dynamics
[15,16] and Monte Carlo simulations[17–19]. Also simpli-
fied molecular models, based on cylindrical rods grafted on a
two-dimensional lattice, have been considered since the pio-
neer work of Safranet al. [20], where a nonuniform tilt has
been discussed. In general, modeling of these systems is a
hard task because knowledge of intermolecular potentials is
limited. Analytical results desirable but difficult to obtain in
view of the very complex chemical structures of these mol-
ecules. Computer simulations seem to be a convenient tool to
investigate the phase behavior, but have to be limited to a
very small number of molecules.

In this paper we consider a continuous model in which the
molecules are treated as rigid rods without internal degrees
of freedom[3]. We extend to these systems the method em-
ployed in Ref. [21] to evaluate the elastic constants of a
liquid crystalline media, starting from the intermolecular in-
teraction. Analytical results are established, showing that the
monolayer film can be characterized from the elastic point of
view by an elastic energy density containing the usual qua-
dratic part and a linear term in the deformation tensor. This
term can be responsible for the ground state periodically de-
formed. We also establish the existence of a critical surface
molecular density separating homeotropic from tilted phases,
depending on the relative importance of the surface energy
with respect to the bulk free energy.

II. TOTAL ENERGY

We consider a simple model in which the membrane is
formed by identical rodlike molecules, of lengthL, having
the direction of their long axes characterized bym. The ori-
entation of the molecules in the membrane is due to the
interactions between the molecules forming the membrane
itself and between the molecules of the membrane with the
flat solid substrate. The reference frame is such thatx andy
axes are parallel to the substrate and thez axis is normal to it.
The starting point for an elastic approach is to evaluate the
deformation free energy of the membrane, by assuming that
the molecular interactions are know. The interparticle poten-
tial is modeled by Lennard-Jones potential of the form

fsrd = − ebFSR0

r
D6

− SR0

r
D12G , s1d

whereR0 is the lower cutoff of the order of the minimum
distance between two neighbor molecules, such thatR0.0,
andeb.0. The intermolecular interaction between two rigid
rodlike molecules forming the membrane is then, by gener-
alizing Eq. (1) to a continuous distribution of interacting
points,

umsm,m8,Rd =E
0

L E
0

L

fsrdd,d,8, s2d

wherem and m8 are the molecular orientations of the two
interacting molecules andR is the position ofm8 with re-
spect tom (see Fig. 1). Furthermore,r is defined in Fig. 2
and represents the distance betweend, andd,8. From Figs.
1 and 2 it follows thatr =rsu ,f ;u8 ,f8 ;R,w ;, ,,8d is given
by

r = ÎR2 + ,2 + ,82 + 2RR − 2,,8L, s3d

where R=,8 sinu8 cossf8−wd−, sinu cossf−wd, and L
=cosu cosu8+sinu sinu8 cossf8−fd.

In the uniform state, whereu=u8 andf=f8, r reduces to

PHYSICAL REVIEW E 70, 041407(2004)

1539-3755/2004/70(4)/041407(7)/$22.50 ©2004 The American Physical Society70 041407-1



r0 = ÎR2 + s,8 − ,d2 + 2Rs,8 − ,dsinu cossf − wd. s4d

To obtain the elastic energy density of the membrane, we
assume, as usual, thatm8=msRd=ms0d+dmsRd, where
udmsRdu!1. To save space, in this section we identifyc1

=u and c2=f [21]. In this manner the previous conditions
readci8=ci +dci, with udciu!1, i =1,2.

In this framework the intermolecular interaction, given by
Eq. (2), can be expanded in power series ofdc1 anddc2 as
follows:

umsc1,c2;c18,c28;R,wd = umsc1,c2;R,wd + Aidci

+
1

2
Bijdcidc j , s5d

where the summation convention has been adopted. In Eq.
(5) we have

umsc1,c2;R,wd =E
0

L E
0

L

fsr0dd,d,8, s6d

Ai =E
0

L E
0

L Sdf

dr
D

0
S ]r

]ci8
D

0

d,d,8, s7d

and

Bij =E
0

L E
0

L Fd2f

dr2S ]r

]ci8

]r

]c j8
D +

df

dr

]2r

]ci8]c j8
G

0

d,d,8. s8d

In Eqs. (7) and (8) the subscript 0 means that all the
quantities have to be evaluated forc1=c18 andc2=c28. In the
elastic approximation,dci can be expanded as

dci = xa

]ci

]xa

+
1

2
xaxb

]2ci

]xa]xb

, s9d

for a, b=1,2,with x1=x, x2=y. The elastic energy density is
given by

F =
s2

2
E

R0

` E
0

2p

umsc1,c2;c18,c28;R,wdRdRdw, s10d

wheres is the surface molecular density. By substituting Eq.
(9) into Eq. (5) and the result into Eq.(10) we obtain

F = F0 + F1 + F2, s11d

whereF0 is the uniform part of the interaction energy andF1
is the elastic contribution linear in the first and second de-
rivatives ofc1 andc2, whereasF2 is the elastic contribution
quadratic in the first-order derivatives ofc1 andc2.

As follows from the discussion reported above,F0 is
given by

F0sc1,c2d =
s2

2
E

R0

` E
0

2p

umsc1,c2;R,wdRdrdw s12d

and can be evaluated numerically. Notice thatF0, as given by
Eq. (12), does not depend, obviously, onc2s=fd. As will be
discussed in the following, since the molecules interact also
with the substrate, the uniform part of the energy has to
contain, besidesF0sc1,c2d, also another contribution.

For what concernsF1 it is of the kind

F1 = aa
i ]ci

]xa

+
1

2
aab

i ]2ci

]xaxb

, s13d

where

aa
i =

s2

2
E

R0

` E
0

2p

xa AiRdRdw s14d

and

aab
i =

s2

2
E

R0

` E
0

2p

xa xbAiRdRdw, s15d

with i =c1,c2. Finally, the usual quadratic part is given by

F2 =
1

2
bab

i j ]ci

]xa

]c j

]xb

, s16d

where

bab
i j =

s2

2
E

R0

` E
0

2p

xaxbBijRdRdw. s17d

From the elastic point of view the membrane is characterized
by the parametersaa

i andbab
i j . Sinceaa

i are connected to the

FIG. 1. Orientations of two rodlike molecules, of lengthL,
whose long axes arem and m8. The Cartesian axesx and y are
parallel to the flat solid substrate.u is the angle by which a mol-
ecule of the membrane may bend under the action of the
interactions.

FIG. 2. Definition of the interparticle distancer and of the in-
tegration elementsd, andd,8 relative to two identical molecules of
lengthL, whose long axes arem andm8.
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linear terms in the deformation tensor, they can be respon-
sible for spontaneous elastic deformations[22]. Furthermore,
the aab

i give rise to elastic terms similar to the splay-bend
elastic constantK13. Finally, bab

i j are the equivalent of the
usual Frank elastic constants of nematic liquid crystals[23].

A. Direct interaction of a molecule with the substrate

The interaction of a molecule(point) with a surface(half-
space) is assumed to be

gszd = − esFSR0

z
D3

− SR0

z
D9G , s18d

wherez is the distance of the molecule from the surface.
In the case under consideration where the molecule is rod

like, in a first approximation, the direct interaction of a mol-
ecule with the substrate, supposed isotropic, can be easily
obtained by generalizing Eq.(18). We have

ussud =E
0

L

gszdd,, s19d

wherez=z+, cosu and we assume thatz is u independent
(Fig. 3). The integration indicated in Eq.(19) can be easily
performed, giving

ussud
es

=
R0

3

8 cosu
FR0

6 − 4z6

z8 +
4sz + L cosud6 − R0

6

sz + L cosud8 G .

s20d

In Fig. 4 the behavior of the direct interaction of the mol-
ecule versusu is shown. Homeotropic orientation corre-
sponds tou=0. The surface part of the free energy is then
minimized foru→p /2, whenL /R0@1—i.e., for planar ori-
entation.

B. Uniform part of the energy

The uniform part of the energy is given by

Fusud = F0sud + Fssud, s21d

whereF0sud is given by Eq.(12) and

Fssud = sussud. s22d

Consequently,

Fusud =
s2

2
E

R0

` E
0

2p

umsu,f;R,wdRdRdw + sussud, s23d

where, as stated above, thef dependence disappears after
integration overw. Let us assume thatFusud has a minimum
for u=u0, defining a uniform state.

The behavior ofFusud vs u was numerically investigated
for different values of the ratioe=es/eb (giving the relative
importance of the surface to bulk contribution to the uniform
part of the total free energy). For each value of the surface
molecular densitys, it was verified that, in fact,Fusud pre-
sents a minimum for 0øuøp /2 as expected. In Fig. 5 the
valueuc for which Fusud is minimum is shown as a function
of the dimensionless surface molecular densitysI =sR0

2. As
follows from Fig. 5, there exists a critical value of the sur-
face densitys, sc, such that fors.sc the homogeneous
stable orientation is the one in which the rodlike molecules
are normal to the substrate. This result can be easily under-
stood. In fact, fors.sc the repulsive part of the Lennard-

FIG. 3. Molecular orientation near the solid substrate.z is in the
molecular scale of length.

FIG. 4. Behavior of the direct interaction of the molecule vsu
for L /R0=10 andz /R0=1.0.

FIG. 5. Phase diagram exhibiting the valueuc for which Fusud is
minimum vs the inverse of the dimensionless surface molecular
densitysI =sR0

2 (see the text).
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Jones interaction dominates, and tilted orientations are for-
bidden. On the contrary, for smalls the interaction with the
substrate, which favors the planar orientation, can induce a
tilted orientation. Fors<sc we haveuc~ ssc−sd1/2, typical
of second-order phase transitions. This suggests that the film
with uc=0 and withucÞ0 can be considered as two different
phases of the film. This result is in agreement with the com-
puter simulation analysis performed in Refs.[3,17].

III. EVALUATION OF THE ELASTIC CONSTANTS

By substituting Eq.(4) into Eq. (7) and taking into ac-
count thatc1=u andc2=f, we obtain

Au = Rcosu cossf − wdH,

Af = − Rsinu sinsf − wdH, s24d

where

H = Hsu,f;R,wd =E
0

L E
0

L ,8

r0
Sdf

dr
D

0
d,d,8. s25d

By substituting Eqs.(24) into Eqs.(14) and(15) one obtains

ax
u = cosuscosfI20 + sinfI11d,

ay
u = cosuscosfI11 + sinfI02d,

ax
f = sinuscosfI11 − sinfI20d,

ay
f = sinuscosfI02 − sinfI11d, s26d

and

axx
u = cosuscosfJ30 + sinfJ21d,

ayy
u = cosuscosfJ12 + sinfJ03d,

axy
u = cosuscosfJ21 + sinfJ12d,

axx
f = sinuscosfJ21 − sinfJ30d,

ayy
f = sinuscosfJ03 − sinfJ12d,

axy
f = sinuscosfJ12 − sinfJ21d, s27d

where

Imn=
s2

2
E

R0

` E
0

2p

R3H cosm w sinn wdRdw s28d

and

Jmn=
s2

2
E

R0

` E
0

2p

R4H cosm w sinn wdRdw. s29d

Let us consider now the elastic parametersbab
i j defined by

Eq. (17). By using Eq.(8) we obtain

Buu = R2 cos2 u cos2sf − wdL + M − Rsinu cossf − wdH,

Bff = R2 sin2 u sin2sf − wdL + sin2 uM

− Rsinu cossf − wdH,

Buf = − R2 sinu cosu sinsf − wdcossf − wdL

− Rcosu sinsf − wdH, s30d

whereH is defined by Eq.(25):

L = Lsu,f;R,wd =E
0

L E
0

L ,82

r0
2 FSd2f

dr2D
0

−
1

r0
Sdf

dr
D

0
Gd,d,8

s31d

and

M = Msu,f;R,wd =E
0

L E
0

L ,8,

r0
Sdf

dr
D

0
d,d,8. s32d

Using now Eqs.(30) the elastic parameters we are looking
for are given by

bxx
uu = cos2 usP40 cos2 f + P31 sin 2f + P22 sin2 fd + Q20

− sinusS30 cosf + S21 sinfd,

byy
uu = cos2 usP22 cos2 f + P13 sin 2f + P04 sin2 fd + Q02

− sinusS12 cosf + S03 sinfd,

bxy
uu = cos2 usP31 cos2 f + P22 sin 2f + P13 sin2fd + Q11

− sinusS21 cosf + S12 sinfd, s33d

bxx
ff = sin2 usP40 sin2 f − P31 sin 2f + P22 cos2fd

+ Q20 sin2 u − sinusS30 cosf + S21 sinfd,

byy
ff = sin2 usP22 sin2 f − P13 sin 2f + P04 cos2 fd

+ Q02 sin2 u − sinusS12 cosf + S03 sinfd,

bxy
ff = sin2 usP31 sin2 f − P22 sin 2f + P13 cos2 fd

+ Q11 sin2 u − sinusS21 cosf + S12 sinfd, s34d

and

bxx
uf = − sinu cosu fsP40 − P22dcosf sinf − P31 cos 2fg

− cosusS30 sinf − S21 cosfd,

byy
uf = − sinu cosu fsP22 − P04dcosf sinf − P13 cos 2fg

− cosusS12 sinf − S03 cosfd,

bxy
uf = − sinu cosu fsP31 − P13dcosf sinf − P22 cos 2fg

− cosusS21 sinf − S12 cosfd, s35d

where

Pmn=
s2

2
E

R0

` E
0

2p

R5L cosm w sinn wdRdw,
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Qmn=
s2

2
E

R0

` E
0

2p

R3M cosm w sinn wdRdw,

Smn=
s2

2
E

R0

` E
0

2p

R4H cosm w sinn wdRdw. s36d

Relations(26), (27), and (33)–(35) give the elastic param-
eters characterizing the monomolecular film for all molecular
orientationsu ,fd.

Small fluctuations near to a uniform state

For small fluctuations near to a uniform state, we can
assume thatf=0. In this caser0, given by Eq.(4), can be
written asr0su ,0 ;R,w ;, ,,8d—i.e.,

r0 = ÎR2 + s,8 − ,d2 + 2Rs,8 − ,dsinu cosw. s37d

From Eq.(37) it follows that

r0su,0;R,w;,,,8d = r0su,0;R,2p − w;,,,8d. s38d

In this case also the functionsHsu ,0 ;R,wd, Lsu ,0 ;R,wd, and
Msu ,0 ;R,wd, introduced before, are such that

Hsu,0;R,wd = Hsu,0;R,2p − wd,

Lsu,0;R,wd = Lsu,0;R,2p − wd,

Msu,0;R,wd = Msu,0;R,2p − wd. s39d

Consequently, from Eqs.(28), (29), and(36), it follows that
if n is odd, Imn, Jmn, Pmn, Qmn, andSmn are zero. From this
observation it follows that near to a homogeneous statesu
=u0,f=0d the elastic parameters are given by

ax
u = cosu0I20su0d,

ay
u = 0, ax

f = 0,

ay
u = sinu0I02su0d, s40d

axx
u = cosu0J30,

ayy
u = cosu0J12su0d,

axy
u = 0, axx

f = 0,

ayy
f = sinu0J03,

axy
f = sinu0J12su0d, s41d

and

bxx
uu = cos2 u0P40su0d + Q20su0d − sinu0S30su0d,

byy
uu = cos2 u0P22su0d + Q02su0d − sinu0S12su0d,

bxy
uu = bxy

ffbxx
uf = byy

uu = 0,

bxx
ff = sin2 u0P22su0d + Q20su0dsin2 u0 − sinu0S30su0d,

byy
ff = sin2 u0P04su0d + Q02su0dsin2 u0 − sinu0S12su0d,

bxy
uu = sinu0 cosu0 P22su0d + cosu0S12su0d. s42d

In Fig. 6 the behavior of the elastic coefficientsbab
i j is

shown as a function ofu0. For the illustrative set of param-
eters we are using(L /R0 andz /R0=1.0) the coefficients, for
u0.p /2, are bxx

uu<23108, byy
uu<33105, bxx

ff<23107,
byy

ff<23104, and bxy
uu<63104. In Fig. 7 the same elastic

coefficients are shown as a function ofsI for u0<p /2 for the
same set of parameters as in Fig. 6. The important feature of

FIG. 6. Behavior of the elastic coefficients vsu0, for sI =0.1. (a)
10−3byy

ff, (b) 10−3byy
uu, (c) 10−6bxx

ff, (d) 10−6bxx
uu, and(e) 10−3bxy

uu. The
scale is arbitrary just to show all the coefficients in the same plot.
However, all the elastic coefficients are positive in the range 0
øu0øp /2. The curves were depicted forL /R0=9.0 and z /R0

=1.0.

FIG. 7. Behavior of the elastic coefficients vssI for u0

=1.56 rad. Solid line refers to 10−6byy
uu, dotted line to 10−8bxx

uu,
dashed line to 10−4byy

ff, dash-dotted line to 10−7bxx
ff, and short-

dotted line to 10−53bxy
uu. The scale is arbitrary and the set of pa-

rameters is the same as in Fig. 6.
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these figures is the fact that the coefficients are always posi-
tive. This fact is an indication of the stability of the orienta-
tional states of the membrane, sincebab

i j , as discussed before,
play a role analogous to the Frank elastic constants in liquid
crystals[23]. Furthermore, according to our numerical calcu-
lations,bxx

uu /byy
uu<103 andbxx

ff /byy
ff<103. These results show

that the deformations involving]u /]x and ]f /]x are more
expensive, from the point of view of elastic energy, than the
ones involving the deformations]u /]y and]f /]y.

In particular, ifu0=0, r0, as given by Eq.(37), is reduced
to r0=ÎR2+s,8−,d2. In this situation,Imns0d, Jmns0d, Pmns0d,
Qmns0d, and Smns0d vanish if m is odd. Consequently, for
small fluctuations close to the homeotropic alignment, only
the elastic coefficients

ax
u = I20s0d = K1,

bxx
u = P40s0d + Q20s0d = K2x,

byy
u = P22s0d + Q02s0d = K2y s43d

are different from zero. In this case, at the second order in
du=u the elastic energy density is given by

F = F0 + K1
]u

]x
+

1

2
FK2xS ]u

]x
D2

+ K2yS ]u

]y
D2G . s44d

Notice that the existence of the linear term in the free energy
density could be connected with a deformed ground state of
the membrane[22]. It is the equivalent of the Lifchitz invari-
ants. If the substrate is isotropic, as assumed above,u
=usxd only, because they dependence increases the free en-
ergy density. In this case the favored orientation is the dis-
torted one, with a gradient given by

]u

]x
= −

K1

K2x
.

In Fig. 7 the dependence of the elastic parametersbij
ab vs

the surface density is shown. As expected, they are mono-
tonic functions ofs. In fact, ass increases the attractive part

of the Lennard-Jones potential favors homogeneous align-
ment, indicating that spatial deformations are very expensive
from the point of view of the energy. In Fig. 8 we show the
elastic constantsK1 vs sI for small deformation close to the
homeotropic orientation, for a typical value ofL /R0, and in
Fig. 9, K2x andK2y are shown for two illustrative values of
the parameters. All these constants are positive increasing
functions in the entire range of values ofsI .

IV. CONCLUSIONS

We proposed a continuum model of orientational ordering
in dense self-assembled systems forming a monomolecular
film. The molecules forming the film have been treated as
rigid rods without internal degrees of freedom. By assuming
a Lennard-Jones-like potential for the intermolecular interac-
tion and for the molecule-substrate interaction, we have
evaluated the elastic constants of the film. According to our
analysis, the elastic energy density of a membrane formed by
rodlike molecules contains, besides the usual terms quadratic
in the deformation tensor, also linear terms in this quantity.
These linear terms, known in magnetic theory as Lifchitz

FIG. 8. Behavior of the elastic constantK1 vs sI . (a) L /R0=10,
(b) L /R0=20, and(c) L /R0=100.

FIG. 9. Behavior of the elastic constantK2x andK2y vs sI for the
case in which(a) L /R0=20 and(b) L /R0=100.
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invariants, can be responsible for ground states that can be
periodically deformed. We have also investigated the stabil-
ity of the uniform orientation with respect to the surface
density. Our results are in agreement with the ones obtained
by means of computer simulation, but are mostly established
in analytical manner.
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